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Abstract
A one-dimensional Kohn–Sham system for spin particles is considered which
effectively describes semiconductor nanostructures, and which is investigated
at zero temperature. We prove the existence of solutions and derive a priori
estimates. For this purpose we find estimates for eigenvalues of the Schrödinger
operator with effective Kohn–Sham potential and obtain W 1,2-bounds of the
associated particle density operator. Afterwards, compactness and continuity
results allow us to apply Schauder’s fixed point theorem. In the case of
vanishing exchange–correlation potential uniqueness is shown by monotonicity
arguments. Finally, we investigate the behavior of the system if the temperature
approaches zero.

PACS numbers: 02.30.Tb, 03.65.Yz, 31.15.ec
Mathematics Subject Classification: 34L40, 34L30, 47H05, 81V70

1. Introduction

Hohenberg and Kohn have shown in [16] that the ground state of an N-body quantum system
at zero temperature is completely determined by the particle density. Nowadays that paper is
considered as the starting point of the so-called density functional theory (DFT). The main
advantage of this approach is that the description of an N-body quantum problem can be
reduced to an effective one-body system. A shortcoming of [16] is that only the existence of
such a functional, depending on the particle density, was shown, but the functional was not
given explicitly. In [23], Kohn and Sham have indicated such functionals with N-electrons
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look like

E[u] = − h̄2

2m

N∑
n=1

∫
|∇ϕn(r)|2 d3r − q2

4πε0

M∑
k=1

∫
Zku(r)
|r − Rk| d3r

+
q2

2

∫ ∫
u(r)u(r′)

4πε0|r − r′| d3r d3r′ +
∫

εxc[u](r) d3r,

where M is the number of positive ions, Zk is their atomic number, Rk is the positions of
ions, q is the magnitude of the elementary charge, ε0 is the vacuum permittivity and εxc[u]
is the so-called exchange–correlation energy density. The particle density u is given by the
expression

u(r) := 2
N∑

n=1

|ψn(r)|2,

where 2 counts for the spin degeneracy of the particles, and ψn are eigenfunctions satisfying
the Kohn–Sham equation:(

− h̄2

2m
� − q2

4πε0

M∑
k=1

Zk

|r − Rk| + q2
∫

u(r′)
4πε0|r − r′| d3r′ + Vxc[u](r)

)
ψn = Enψn.

By Vxc[u] the so-called exchange–correlation potential is denoted, which is given by

Vxc[u](r) := ∂(εxc[u](r))
∂u

.

The potential

V0(r) := − q2

4πε0

M∑
k=1

Zk

|r − Rk| ,

which is determined by the positive ions, can be regarded as a given external potential. The
potential,

ϕ(r) := −q

∫
u(r′)

4πε0|r − r′| d3r′,

is nothing else but the solution of the Poisson equation

�ϕ(r) = qu(r)
ε0

. (1)

So we end up with a Schrödinger operator of the form

HV = − h̄2

2m
� + V,

with the effective Kohn–Sham potential

V := V0 + Vxc[u] − qϕ,

where ϕ obeys the Poisson equation (1). The model is very flexible and widely applicable
because the exchange–correlation term can be well adapted to a great variety of problems.
This is one of the reasons why the approach was very successful in the last 40 years, and Kohn
was awarded the Nobel prize in 1998 for this idea. For a mathematical rigorous treatment
of density functional theory we refer to [24, 25]. In the present paper, the density functional
theory is applied to confined systems, i.e., low-dimensional closed system under electrostatic
influence of two external leads, in particular, to quantum wells. However, it is still an open
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question whether the DFT ansatz can be made rigorous for confined systems. Nevertheless,
the ansatz is widely used in semiconductor physics.

We note that the Kohn–Sham system is closely related to the so-called Hartree–Fock
approximation in N-body quantum systems [26, 27]. The main difference is that the exchange–
correlation term for the Hartree–Fock system is not local. However, performing the low-
density limit one obtains the Hartree–Fock–Slater approximation [6, 13, 36]. In this case,
the exchange–correlation potential is of the form Vxc[u](x) = −Cα|u(x)|α, α = 1/3 in three
dimensions (3D). For α = 2/3 one gets another interesting approximation, which is called
the Thomas–Fermi correction. Usually, models of that type are summarized as Schrödinger–
Poisson–Xα systems, see [5], which fit, of course, into the class of Kohn–Sham systems. In
the following, we do not restrict ourself to Schrödinger–Poisson–Xα systems, but consider
a larger class of local and non-local exchange–correlation terms including the Xα models.
Generally, we assume that the exchange–correlation is a nonlinear mapping acting from the
set of densities into the set of potentials obeying a certain continuity condition. In this way,
we cover not only the density functional approximation but also Hartree–Fock approximation
etc.

Note that all these considerations are made at zero temperature. An extension of the
Hohenberg–Kohn approach to temperatures above zero was proposed by Mermin in [28]. He
showed that the expression for the particle density then modifies to

u(r) := 2
∞∑

n=1

1

1 + eβ(En−µ)
|ψn(r)|2,

such that

N =
∫

u(r) d3r = 2
∞∑

n=1

1

1 + eβ(En−µ)
, (2)

where β := 1/kT , and µ is the so-called chemical potential. The extension to non-zero
temperatures naturally arises the problem on the behavior of solutions of Schrödinger–Poisson
systems in the neighborhood of zero temperature. The problem is not only of academic interest,
but also appears in DFT for a fractional particle number [8–10, 31, 40]. In particular, the
zero-temperature limit of solutions is of interest. A method avoiding the zero-temperature
limit was proposed in [4].

There are many papers on the numerics of the Kohn–Sham system, but very few are on
its mathematical analysis. In the case of non-zero temperature and bounded domains, the
system was analyzed in [18, 19], where existence and a priori estimates were shown. In
[32], the Schrödinger–Poisson–Slater system was investigated for a periodic external potential
V0. The Schrödinger–Poisson system for a non-bounded domain in R

3 is treated in [38]
and in [1, 12, 34, 37] making use of radial symmetry, however, without taking into account
the temperature. The time dynamics of Schrödinger–Poisson systems is considered in [2, 3]
and for the Schrödinger–Poisson–Slater system in [35]. However, in the following we are
interested in the stationary case.

Below, we are going to investigate the zero and non-zero temperature Kohn–Sham systems
with a general exchange–correlation potential for a planar semiconductor nanostructure. The
system reduces essentially to an effective one-dimensional system. Since for one-dimensional
systems the eigenvalues are simple, one avoids in this way the occupation problem for the
last eigenvalue at zero temperature, if it is degenerated. We show the existence of solutions
for such systems at non-zero and zero temperature. In particular, we prove that the solution
is unique, if the exchange–correlation potential is absent. In the zero-temperature case, this
proof is based on an extension of the monotonicity for the negative particle density operator to
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non-smooth distribution functions like Fermi–Dirac distribution function at zero temperature,
see [17]. Finally, we prove that the non-zero temperature solutions of the Kohn–Sham system
converge to those for zero temperature as the temperature goes to zero. In other words, we
make rigorous considerations of [8–10, 31, 40]. A natural next step would be to look at
non-stationary steady states and consider quantum transport through such a device (see [11]
and references therein).

The outline of the paper is as follows. In section 2, we derive an expression of the effective
one-dimensional particle density for a planar semiconductor nanostructure. In section 3, we
introduce the mathematical setup of a one-dimensional Kohn–Sham system and make it
mathematically rigorous. Section 4 is devoted to the existence of solutions. In section 5,
we prove the uniqueness of solutions, if the exchange–correlation term is absent. Finally,
in section 6 we show the convergence of non-zero temperature solutions to zero-temperature
ones as the temperature goes to zero.

Notation. In this paper, the system is considered on the domain 
 := ]0, 1[. For this reason
we omit for all functional spaces the explicit indication of this interval; e.g., write L1 instead
of L1(]0, 1[) and so on. We set W

1,2
0 := {f ∈ W 1,2 : f (0) = f (1) = 0}. The space of

antilinear forms on W
1,2
0 is denoted by W−1,2. For Banach spaces X and Z, we denote by

B(X;Z) the space of all linear, continuous operators from X into Z. If X = Z we write B(X).
Because of the numerous use of X = L2, we introduce the abbreviation ‖·‖ = ‖·‖B(L2).

2. Particle density for planar nanostructures

We consider a planar semiconductor nanostructure; that is, there is a sequence of layers
of different materials along the x-direction (i.e., a sequence of quantum wells and barriers)
embedded between two thick layers of isolator placed at xl and xr . Then, the wavefunctions
of a particle (electron or hole) are given by

�k⊥,l(r) = eik⊥r⊥

2π
ψl(x), x ∈ [xl, xr ], r⊥ ∈ R

2, (3)

and the total energy of the particle is

E = h̄2k2
⊥

2m⊥
+ λl, (4)

where r⊥ = (y, z) represents the transversal coordinates, k⊥ = (ky, kz) represents the
transversal wave number and m⊥ represents the effective mass in the transversal direction. The
wavefunctions along the x-direction and their corresponding energies correspond to the one-
dimensional Schrödinger operator in the effective mass approximation (Ben–Daniel–Duke
form)

HV := −h̄2

2

d

dx

(
m−1 d

dx

)
+ V, x ∈ [xl, xr ], (5)

where m = m(x) is the position-dependent effective mass, and V is an effective Kohn–Sham
potential to be specified later on. The embedding isolator layers impose homogeneous Dirichlet
boundary conditions for the wavefunction along the x-direction, ϕ(xl) = 0, ϕ(xl) = 0,
providing a discrete spectrum of energies, λl , and defining in such a way a closed system in
the x-direction.

Quantum-mechanically, the particle density is given by a sum over all states of their
localization probability multiplied by their occupation probability. For fermions (electrons
and holes) the occupation probability is given by the Fermi–Dirac function.
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At zero temperature, all states up to the Fermi energy EF are equally occupied, with
probability 1, and above EF all states are empty, i.e., occupation probability is 0. Thus, for
zero temperature, the particle density is calculated quantum-mechanically as

u(r) = 2
∫

dk⊥
∑

l︸ ︷︷ ︸
E�EF

∣∣�k⊥,l(r)
∣∣2

,

where 2 counts for the spin degeneracy of the particles. Using expression (3) of the
wavefunctions for planar structures, one has only an x-dependent particle density:

u(x) = 2
NF∑
l=1

|ψl(x)|2
(2π)2

∫ k
(l)
⊥,F

0
1 dk⊥,

where the sum runs up to the last occupied level, i.e. λNF
� EF , and the integral is taken

up to a maximum value of the transversal wave number, k
(l)
⊥,F =

√
2m⊥
h̄2 (EF − λl), depending

on l. The integral over dk⊥ can be performed, and one obtains the particle density at zero
temperature for an effective one-dimensional system [33] as

u(x) = 2
m⊥

2πh̄2

NF∑
l=1

|ψl(x)|2(EF − λl). (6)

At temperature T different from zero the particle density is given by

u(r) = 2
∫

dk⊥
∑

l︸ ︷︷ ︸
0�E�∞

∣∣�k⊥,l(r)
∣∣2

fFD(E,µ)

= 2
∫ ∞

0
dk⊥

∞∑
l=1

∣∣�k⊥,l(r)
∣∣2

fFD(E,µ),

where fFD(E,µ) is the Fermi–Dirac distribution function:

fFD(E,µ) = 1

1 + e
E−µ

kT

,

where k is the Boltzmann constant, and µ is the chemical potential. Inserting (3) and using
(4) one obtains an x-dependent particle density:

u(x) = 2
∞∑
l=1

|ψl(x)|2
(2π)2

∫ ∞

0
fFD

(
h̄2k2

⊥
2m⊥

+ λl, µ

)
dk⊥.

This corresponds to the general form (10) used later on. Also in this case one can perform the
integral over dk⊥, obtaining [7, 41]

u(x) = 2
m⊥

2πh̄2 kT

∞∑
l=1

|ψl(x)|2 ln
(
1 + e

µ−λl
kT

)
, (7)

which provides the expression for fβ(x) used in lemma 6.5 below. Carrying out the limit
T → 0 in (7), one obtains the same expression for the particle density as in the zero-temperature
limit (6), because

lim
T →0

kT ln
(
1 + e

µ−λl
kT

) = (µ − λl)(µ − λl),

( being the Heaviside function) and it is known that the chemical potential for zero
temperature equals the Fermi energy, limT →0 µ = EF .

5
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3. Kohn–Sham systems

3.1. Kohn–Sham systems in one dimension

The Kohn–Sham system is a system of equations governing the electrostatic potential ϕ and the
particle density u under consideration. Let us consider a system of electrons. The electrostatic
potential and the particle density have to obey Poisson’s equation,

− d

dx

(
ε

d

dx
ϕ

)
= D − qu, (8)

in the device domain 
 =]0, 1[, where q is the magnitude of the elementary charge, and
ε = ε(x) denotes the dielectric permittivity. The right-hand side of (8) is a charge distribution
D of ionized dopants and the particle density u which is defined below, see (10). One
has to supplement the Poisson equation (8) by boundary conditions. One can consider
mixed boundary conditions, but not pure Neumann boundary conditions. Here we choose
inhomogeneous Dirichlet boundary conditions:

ϕ(0) = ϕ0 ∈ R and ϕ(1) = ϕ1 ∈ R, (9)

which model metallic contacts. In such a way we treat another system like in [1], where the
electrons are not localized in space and feel only the potential generated by themselves, which
goes to zero at infinity. A straightforward calculation shows that inhomogeneous boundary
conditions can be transformed into homogenous boundary conditions. Indeed, introducing the
function ϕ̃ : [0, 1] �−→ R,

ϕ̃ := ϕ0 +
ϕ1 − ϕ0∫ 1
0

1
ε(t)

dt

∫ x

0

1

ε(t)
dt,

and setting φ := ϕ(x) − ϕ̃, x ∈ [0, 1], one gets that φ satisfies the Poisson equation

− d

dx
ε

d

dx
φ = D − qu

and obeys the homogeneous Dirichlet boundary conditions

φ(0) = 0 and φ(1) = 0.

This gives rise to the Poisson operatorP := − d
dx

ε d
dx

, supplemented by homogeneous Dirichlet
boundary conditions.

The particle density u is computed at non-zero temperature by the quantum-mechanical
expression

u(V )(x) = 2
∞∑
l=1

f (λl(V ) − µf (V ))|ψl(V )(x)|2, x ∈ ]0, 1[, (10)

where 2 counts for the spin degeneracy, f is a distribution function (to be specified later
on), λl = λl(V ) are the eigenvalues and ψl = ψl(V ) are the corresponding L2-normalized
orthogonal eigenfunctions of the Schrödinger operator HV , cf (5). The chemical potential
µf (V ) is determined by the condition

2
∞∑
l=1

f (λl(V ) − µf (V )) = N,

where N is the number of particles (electrons), which is assumed within this paper as given and
fixed, see (2), because the system is considered closed. The effective Kohn–Sham potential V

depends on the particle densities and splits up in the following way:

V = V (u) = �E + Vxc(u) − qϕ,

6
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where ϕ denotes the electrostatic potential. The given external potential �E represents the
band-edge offsets of the nanostructure materials. Vxc is the exchange–correlation potential,
which depends on the particle density, see section 1.

It is a widely discussed question how to supplement the Schrödinger operators (5) by
suitable boundary conditions (see [14, 21, 22]). We choose homogeneous Dirichlet boundary
conditions,

ψ(0) = 0 and ψ(1) = 0,

for all ψ in the domain of the Schrödinger operator HV . They are assisted by the fact that if we
assume a device structure which confines the particles (i.e., closed system), then the particle
densities vanish on the boundary of 
.

3.2. Rigorous mathematical formulation of the problem

In this section, we give a mathematical formulation of the Kohn–Sham system; in particular,
we make precise in which spaces the corresponding operators act and the solutions are
chosen. In view of typical applications [15], our mathematical model must necessarily
cover semiconductor heterostructures, i.e., the coefficients of the Schrödinger and the Poisson
operators are, in general, discontinuous. This forecloses that the domain of the Schrödinger
operator is not lying in W 2,2 which is natural elsewhere, see, e.g., [29, 30]. Fortunately, in the
one-dimensional case the W 1,2-calculus already leads to satisfactory results. Let us introduce
the Poisson operator.

Assumption 3.1. The dielectric permittivity ε is a real, non-negative function obeying ε ∈ L∞

and 1
ε

∈ L∞.

Assumption 3.1 is very natural in the stationary case which is treated here. For a non-stationary
situation the assumption might be not satisfactory.

Definition 3.2. Let assumption 3.1 be satisfied. We define the Poisson operator P : W
1,2
0 �−→

W−1,2 by

〈Pv,w〉 =
∫ 1

0
ε(x)v′(x)w′(x) dx, u,w ∈ W

1,2
0 , (11)

where here and in the sequel 〈·, ·〉 denotes the dual pairing between W
1,2
0 and W−1,2.

One easily estimates

|〈Pv,w〉| � ‖ε‖L∞‖v‖W 1,2‖w‖W 1,2

for u,w ∈ W
1,2
0 . Consequently, P : W

1,2
0 �→ W−1,2 is well defined and continuous.

Furthermore, we have

‖φ‖2
W

1,2
0

� ‖2/ε‖L∞

∫ 1

0
ε(x)|φ′(x)|2 dx, φ ∈ W

1,2
0 ,

which implies

‖φ‖2
W

1,2
0

� ‖2/ε‖L∞〈Pφ, φ〉
for φ ∈ W

1,2
0 . Hence, by the Lax–Milgram lemma, the inverse operatorP−1 : W−1,2 �−→ W

1,2
0

exists, and its norm does not exceed ‖2/ε‖L∞ .

Assumption 3.3. The density of ionized dopants D is a ‘real distribution’ from W−1,2, which
means that it takes real values if applied to real elements from W

1,2
0 .

7
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Definition 3.4. Let assumptions 3.1 and 3.3 be satisfied. Further, suppose u ∈ L1 ↪→ W−1,2.
We say that ϕ ∈ W 1,2 is a solution of the Poisson equation (8) obeying the inhomogeneous
Dirichlet boundary conditions (9), if φ := ϕ − ϕ̃ ∈ W

1,2
0 satisfies

Pφ = D − qu.

We set

ϕ(u) := ϕ̃ + P−1(D − qu). (12)

Next, we are going to introduce the Schrödinger operator.

Assumption 3.5. The effective mass m is a real, non-negative function obeying m ∈ L∞ and
1
m

∈ L∞.

Definition 3.6. Let assumption 3.5 be satisfied. If V ∈ L1 is real valued, then the Schrödinger
operator HV : W

1,2
0 �−→ W−1,2 corresponding to the potential V is defined by

〈HV v,w〉 = h̄2

2

∫ 1

0

1

m(x)
v′(x)w′(x) dx +

∫ 1

0
V (x)v(x)w(x) dx,

v,w ∈ W
1,2
0 .

The definition is justified, because W
1,2
0 continuously embeds into L∞. Thus, the second term

on the right-hand side is always finite and defines a continuous sesquilinear form on W
1,2
0 .

The operator with zero potential will be denoted by H0 in the sequel. The restriction of the
operators just introduced to other range spaces, in particular, to L2, we also denote by HV .

For any real valued V ∈ L1, the restriction of HV to the range space L2 is self-adjoint
and has a complete orthonormal system of eigenfunctions. All eigenvalues are then real and
simple. The operator HV corresponds to Dirichlet boundary conditions which are chosen here
for simplicity. It is possible to replace the Dirichlet boundary conditions by Neumann or even
Robin boundary ones which leads to minor proof modifications, in particular, to a modification
of the distribution of eigenvalues.

Definition 3.7. We say that a non-increasing continuous function f : R �→ [0,∞[ is from the
class D, if one of the following conditions is satisfied:

(i) there is a t ∈ ]−∞,∞[ such that f is strictly decreasing on the interval ]−∞, t[ and
zero on [t,∞[,

(ii) the function f is strictly decreasing and obeys

sup
s∈[1,∞[

f (s)s2 < ∞.

Assumption 3.8. In the sequel we assume that all occurring distribution functions f are from
the space D.

Remark 3.9. Let us explicitly note that in contrast to other papers besides continuity no
further regularity assumptions are imposed on the distribution functions. Only this allows us
to include the zero-temperature case, see section 6.

Lemma 3.10. Let assumptions 3.5 and 3.8 be satisfied. If {λl(V )}l are the eigenvalues of
the Schrödinger operator HV with real potential V ∈ L1, then for every N ∈ [1,∞[ there is

8



J. Phys. A: Math. Theor. 41 (2008) 385304 H Cornean et al

exactly one real number E ∈ R, which satisfies

2
∑

l

f (λl(V ) − E) = N.

This real number is called the chemical potential and is denoted by µf (V ).

Proof. For every f ∈ D and every E ∈ R the expression
∑

l f (λl(V ) − E) is finite. This
shows that the function,

F(E) :=
∑

l

f (λl(V ) − E),

is well defined and continuous. The function F(·) is non-decreasing and obeys
limE→−∞ F(E) = 0 and limE→+∞ F(E) = ∞.

If assumption 3.7(i) is satisfied, then F(E) = 0 for E � λ1(V ) − t provided the
eigenvalues are ordered by λ1(V ) � λ2(V ) � · · ·. If E > λ1(V ) − t , then F(E) > 0, and
F(·) is strictly increasing. Hence the equation, 2F(E) = N > 0, has a unique solution. If
assumption 3.7(ii) is valid, then F(·) is strictly increasing on R, which yields that 2F(E) = N

has a unique solution. �

Remark 3.11. In the following, we assume that the number of particles in the Kohn–Sham
system is always fixed by N ∈ [1,∞[ without indicating this explicitly.

Definition 3.12. Let assumptions 3.5 and 3.8 be satisfied. Further, let {ψl(V )}l and {λl(V )}l
be the eigenfunctions and eigenvalues of the Schrödinger operator HV with real potential
V ∈ L1 and let µf (V ) be the chemical potential. Then

Nf (V )(x) := 2
∑

l

f (λl(V ) − µf (V ))|ψl(V )(x)|2, x ∈ [0, 1]

defines an operator Nf : L1 �−→ L1 which is called the particle density operator.

Remark 3.13. Nf (V ) obviously satisfies∫ 1

0
Nf (V ) dx = 2

∞∑
l=1

f (λl(V ) − µf (V )) = N.

Assumption 3.14.

(a) The potential �E is a real-valued L1 function.
(b) The exchange–correlation term in its dependence on the particle densities, i.e. the mapping

u �−→ Vxc(u), is a continuous and bounded mapping from L1 into L1.

Assumption 3.14 was made by the suggestion to find a wide class of exchange–correlation
terms which covers not only local DFT potentials but also non-local approximations of Hartree–
Fock type etc. One easily verifies that the Hartree–Fock–Slater and Thomas–Fermi exchange–
correlation terms are included.

Definition 3.15. Let assumptions 3.1, 3.3, 3.5, 3.8 and 3.14 be satisfied. The pair
{ϕ, u} ∈ W 1,2 ×L1 is called a solution of the Kohn–Sham system with distribution function f ,
if ϕ solves the Poisson equation (8) with inhomogeneous Dirichlet boundary conditions (9),
and the particle density u is given by

u := Nf (�E + Vxc(u) − qϕ).

9
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4. Existence of solutions

In this section, we are going to show that the Kohn–Sham system always admits a solution.
As in [18, 19] Schauder’s fixed point theorem is used, which requires several estimates (e.g.,
eigenvalues of the Schrödinger operator, W 1,2-bounds of the particle density operator). To
assure its applicability, we first establish some prerequisites.

Definition 4.1. For m ∈ L∞ we set m := max
(
1,

2‖m‖L∞
h̄2

)
.

Remark 4.2. Recognizing that m has been defined such that 1/m is a monotonicity constant
of the operator H1 = H0 + 1 : W

1,2
0 �→ W−1,2, the Lax–Milgram lemma shows that the norm

of the inverse operator is not larger than m,

‖ψ‖2
W

1,2
0

� m〈(H0 + 1)ψ,ψ〉, ‖(H0 + 1)−1‖B(W−1,2,W
1,2
0 ) � m.

By some calculations one finds

‖ψ‖L∞ �
√

2‖ψ‖
1
2

W
1,2
0

‖ψ‖
1
2

L2 ,

which proves the continuous embedding W
1,2
0 ↪→ L∞.

The following proposition allows us to compare the eigenvalues of the Schrödinger
operators HV and H0 and, additionally, provides a comparison between the operators
(H0 + 1)−1/2 and (HV − ρ)−1/2. We will need both later on as technical instruments.

Proposition 4.3. Let assumption 3.5 be satisfied and let V ∈ L1 be real valued. Then the
following holds:

(i) The eigenvalues λl(V ) of the operator HV can be estimated as follows:

1
2 (ςl + 1) + ρV � λl(V ) � 3

2 (ςl + 1) − ρV − 2, l = 1, 2, . . . , (13)

where ςl are the eigenvalues of the operator H0, and ρV is given by

ρV = −2‖V ‖2
L1m − 1.

(ii) For ρ � ρV the spectrum of (HV − ρ)−1 is contained in [0, 2] and

‖(HV − ρ)−
1
2 (H0 + 1)

1
2 ‖ = ‖(H0 + 1)

1
2 (HV − ρ)−

1
2 ‖ �

√
2. (14)

A proof of this is to be found in [18], see proposition 3.3.

Remark 4.4. The form which defines H0 may be estimated as follows:

h̄2

2
ess inf
x∈(0,1)

{
1

m

} ∫ 1

0
|v′(x)|2 dx

� h̄2

2

∫ 1

0
m(x)−1|v′(x)|2 dx � h̄2

2
ess sup
x∈(0,1)

{
1

m

}∫ 1

0
|v′(x)|2 dx.

Thus, the eigenvalues of H0 compare by the minimax principle from below and above in
an obvious manner with the eigenvalues of − d2

dx2 combined with a homogeneous Dirichlet
condition.

The reader should note that proposition 4.3 gives uniform bounds with respect to L1−
bounded sets of potentials.

10
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From proposition 4.3 we can deduce the following.

Lemma 4.5. Let assumption 3.5 be satisfied, and let M ⊂ L1 be a bounded set of real-valued
potentials. If

ρ < ρM := inf
V ∈M

ρV = −2m sup
V ∈M

‖V ‖2
L1 − 1,

then, the mapping

L1 ⊃ M � V �→ (HV − ρ)−1 ∈ B(L2)

is Lipschitz continuous in V with a Lipschitz constant depending on M.

Proof. If ρ � ρM, then ρ belongs to the resolvent set of HV for any V ∈ M by proposition 4.3.
Moreover, one has

HV − ρ = HV − ρV + ρV − ρ � 1
2I, (15)

since HV − ρV � 1
2I for V ∈ M by proposition 4.3. Applying the resolvent equation

(HV − ρ) − (HU − ρ) = (HV − ρ)(U − V )(HU − ρ),

one obtains

‖(HV − ρ)−1 − (HU − ρ)−1‖ = ‖(HV − ρ)−1(U − V )(HU − ρ)−1‖.
The latter term may be estimated as follows:

‖(HV − ρ)−1(U − V )(HU − ρ)−1‖ � ‖U − V ‖B(L∞;L1)

×‖(HV − ρ)−1/2‖‖(HV − ρ)−1/2(H0 + 1)1/2‖
×‖(H0 + 1)−1/2‖B(L1;L2)‖(H0 + 1)−1/2‖B(L2;L∞)

×‖(H0 + 1)1/2(HU − ρ)−1/2‖‖(HU − ρ)−1/2‖.
The factors ‖(HV − ρ)−1/2‖ and ‖(HU − ρ)−1/2‖ are uniformly bounded in U,V due to
(15). ‖(HV − ρ)−1/2(H0 + 1)1/2‖, ‖(H0 + 1)1/2(HU − ρ)−1/2‖ are uniformly bounded by (14).
Furthermore, ‖(H0 + 1)−1/2‖B(L2;L∞) is finite by the embedding W

1,2
0 ↪→ L∞. This implies

‖(H0 +1)−1/2‖B(L1;L2) < ∞ by duality. Finally, ‖U −V ‖B(L∞;L1) is identical with ‖U −V ‖L1 .
�

Corollary 4.6. Let assumption 3.5 be satisfied. If {Vn}n converges to V in L1, then the
operator sequence {H +Vn}n∈N converges in the norm resolvent sense to H +V . In particular,
the eigenvalues and the eigenprojections of H +Vn converge to the corresponding eigenvalues
and eigenprojections of H + V .

The proof follows from the preceding corollary and a well-known perturbation theorem, see
[20, Ch. IV.3.4].

Lemma 4.7. Let assumptions 3.5 and 3.8 be satisfied.

(i) For any bounded set of real potentials in L1 the set of chemical potentials is also bounded.
Additionally, this bound can be taken as even uniform with respect to any subset D1 ⊂ D
of distribution functions f obeying in addition

sup
f ∈D1

sup
t∈[1,∞[

f (t)t < ∞ and inf
f ∈D1

f (a) > 0 for one a ∈ R. (16)

(ii) Let C := {fj }∞j=1 be a sequence of functions from D1 which converges uniformly
on bounded intervals to a function f ∈ D as j → ∞. If Vj �→ V in L1, then
limj→∞ µfj

(Vj ) = µf (V ).

11
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Proof.

(i) By the monotonicity of f , one has
∑

l f (λl(V )−E) � k inff ∈C f (a) if k items λl −E are
situated below a. This means

∑
l f (λl(V ) − E) �→ ∞ for E �→ ∞ uniform within D1.

Thus, the chemical potential µf (V ) has to be bounded from above by the monotonicity of
f and (13), uniformly within the class C. On the other hand, if E � infl inf spec(HVl

)−1,
then one can estimate∑

l

f (λl(V ) − E) � sup
f ∈C

sup
t∈[1,∞[

f (t)t
∑

l

(λl(V ) − E)−1,

which again, by (13), tends to zero for E �→ −∞ uniformly for f ∈ D1 and uniform over
sets of potentials which are bounded in L1.

(ii) First, the chemical potentials are uniformly bounded, due to (i). Thus, the eigenvalues of
the operators HVj −µfj

(Vj ) admit uniform bounds as in proposition 4.3. Assume that the
assertion was not true; then for a subsequence {Vk}k one has∣∣µfk

(Vk) − Ef (V )
∣∣ > ε > 0. (17)

Because the chemical potentials form a bounded set, we may again pass to a subsequence
{Vn}n, and suppose

lim
n→∞ µfn

(Vn) = E �= µf (V ). (18)

We will now show that this leads to

lim
n�→∞

∑
l

fn(λl(Vn) − µfn
(Vn)) =

∑
l

f (λl(V ) − E). (19)

First, it follows from (16) and proposition 4.3 that for any δ > 0 there is a number l0 such
that∑
l>l0

fn(λl(Vn) − µfn
(Vn)) < δ and

∑
l>l0

f (λl(V ) − E) < δ (20)

uniformly for all n. The remaining eigenvalues λl(Vn) for l � l0 and all n lie in a bounded
interval and, additionally, due to corollary 4.6, one has limn�→∞ λl(Vn) = λl(V ) for every
l. Thus, according to (18), (20) and the uniform convergence of {fj }j to f on bounded
intervals as j → ∞, the term∣∣∣∣∑

l

fn(λl(Vn) − µfn
(Vn)) −

∑
l

f (λl(V ) − E)

∣∣∣∣
becomes smaller than 3δ for sufficiently large n and arbitrarily chosen δ > 0. This implies
(19), but (19) must be false: the terms on the left-hand side all equal N that cannot be
true for the right-hand side due to (18) and lemma 3.10. Hence, (17) is wrong, which
proves (ii). �

Remark 4.8. The lemma shows, in particular, that the chemical potentials continuously
depend on the potential.

Theorem 4.9. Let assumptions 3.5 and 3.8 be satisfied, and let M be a bounded set of real
potentials in L1. Then the following holds:

(i) The image Nf (M), f ∈ D, is a bounded set in W
1,2
0 . The bound may be taken uniformly

with respect to any set D2 ⊂ D of distribution functions f which satisfy the additional
conditions

sup
f ∈D2

sup
t∈[0,∞[

f (t)t (t + 1) < ∞ and inf
f ∈D2

f (a) > 0 for one a ∈ R. (21)

12
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(ii) The particle density operator Nf : L1 �→ L1, f ∈ D, is continuous.

Proof.

(i) For V ∈ M we get

‖Nf (V )‖W
1,2
0

=
∥∥∥∥∥2

∑
l

f (λl(V ) − µf (V ))|ψl|2
∥∥∥∥∥

W
1,2
0

� 2
∑

l

f (λl(V ) − µf (V ))‖|ψl|2‖W
1,2
0

� 4
∑

l

f (λl(V ) − µf (V ))‖ψl‖2
W

1,2
0

, (22)

where in the last step we used ‖|ψ |2‖W
1,2
0

� 2‖ψ‖2
W

1,2
0

for all ψ ∈ W
1,2
0 . We estimate the

terms in (22):

‖ψl‖2
W

1,2
0

� m‖(H0 + 1)
1
2 ψl‖2

L2

� m‖(H0 + 1)
1
2 (HV − ρ)−

1
2 ‖2‖(HV − ρ)

1
2 ψl‖2

L2 � 2m(λl(V ) − ρ),

(see (14)) where ρ < ρM, and ρM given by lemma 4.5 is a uniform lower bound for the
spectra of the operators HV with V ∈ M. From (22) it follows the estimate

‖Nf (V )‖W
1,2
0

� 8m
∑

l

f (λl(V ) − µf (V ))(λl(V ) − ρ)

� 8m
∑

l

f (λl(V ) − µf (V ))[(µf (V ) − ρ) + (λl(V ) − µf (V ))]

� 8mN |µf (V ) − ρ|
+ 8m

∑
l:λl(V )−µf (V )�0

f (λl(V ) − µf (V ))(λl(V ) − µf (V )).

The last sum may be estimated by

sup
t∈[0,∞[

f (t)t (t + 1)
∑

l:λl(V )−µf (V )�0

(λl(V ) − µf (V ) + 1)−1.

Obviously, the condition (21) is stronger than (16); thus, the set of chemical potentials is
uniformly bounded for f ∈ D1 and V ∈ M. This, together with the eigenvalue estimates
(13) and remark 4.4 proves (i).

(ii) According to corollary 4.6 and lemma 4.7 the eigenvalues and the corresponding chemical
potentials depend continuously on V � L1. Furthermore, if {Vj }j converges in L1 to V ,
then, due to corollary 4.6, the (one-dimensional) eigenprojections Pj,l = 〈·, ψl(Vj )〉ψl(Vj )

converge to the corresponding eigenprojections Pl = 〈·, ψl(V )〉ψ(V ). Applying these
eigenprojections to the vector ψl(V ), one easily obtains

|〈ψl(V ), ψl(Vj )〉| �→ 1 and 〈ψl(V ), ψl(Vj )〉ψl(Vj ) �→ ψl(V ) in L2 for j �→ ∞.

From this it is not hard to see that |ψl(Vj )|2 �→ |ψl(V )|2 in L1. Observing that for
sufficiently large M∥∥∥∥∥∥

∑
l�M

f (λl(V ) − µf (V ))|ψl(V )|2
∥∥∥∥∥∥

L1

�
∑
l�M

f (λl(V ) − µf (V ))

13
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can be made arbitrarily small uniformly over an L1-bounded set of potentials V , one
obtains (ii). �

Corollary 4.10. Let assumptions 3.5 and 3.8 be satisfied. If X is a Banach space continuously
injecting into L1 such that W

1,2
0 compactly embeds into X, then the particle density operator

Nf : L1 �→ X is well defined and continuous.

Proof. That it is well defined follows from the embedding W
1,2
0 ↪→ X. Assume that the

continuity does not hold; then there must be a sequence {Vn}n converging in L1 to V such that

‖Nf (Vn) − Nf (V )‖X > ε > 0. (23)

The statement (i) of the foregoing lemma tells us that {Nf (Vn)}n is bounded in W 1,2. Thus,
by the compactness of the embedding W 1,2 ↪→ X there must be a subsequence {Vk}k such
that Nf (Vk) converges in X to an element W . But Nf (Vk) converges to Nf (V ) in L1. Thus,
W must equals Nf (V ) by the continuous injection X ↪→ L1, which contradicts (23). �

To prove the existence of solutions of the Kohn–Sham system we will introduce an
appropriate subset of L1 together with a suitable mapping � from this set into itself. � will be
constructed such that the solutions to the Kohn–Sham system coincide with the fixed points
of this mapping.

Definition 4.11. We set

L1
N :=

{
u ∈ L1 : u � 0,

∫ 1

0
u dx = N

}
.

Let assumptions 3.1, 3.3, 3.5, 3.8 and 3.14 be satisfied. Then we define the mapping
�f : L1

N → L1
N by

�f (u) := Nf (�E + Vxc(u) − qϕ(u)), (24)

where ϕ(u) denotes the u-dependent solution to Poisson’s equation given by (12).

The task now is to verify that �f has a fixed point. We will use Schauder’s theorem to
achieve this. This is different from [1] where an extremum point for the constructed functional
is found.

Theorem 4.12. Let assumptions 3.1, 3.3, 3.5, 3.8 and 3.14 be satisfied. Then

(i) the pair {ϕ(u), u} is a solution of the Kohn–Sham system if and only if u ∈ L1
N is a fixed

point of �f , where ϕ(u) is given by (12), and
(ii) the mapping �f has a fixed point.

Proof. (i) The first part of the theorem follows immediately from the definition of the mappings
Nf and �f .

(ii) To prove the second part we note that L1
N is a closed, bounded and convex set, which

is mapped by �f into itself (definition 4.11).

Continuity. Since L1 ↪→ W−1,2, the solution ϕ to Poisson’s equation depends continuously (in
W

1,2
0 ) on u. Hence, due to assumption 3.14, the mapping L1 � u �→ �E+Vxc(u)−qϕ(u) ∈ L1

is continuous. Theorem 4.9 then implies the continuity of �f .

Compactness. According to theorem 4.9, the image of a L1-bounded set of potentials is
bounded in the space W 1,2. The compactness of the embedding W 1,2 ↪→ L1 yields the
compactness of �f .

Thus, due to Schauder’s fixed point theorem, �f has a fixed point in L1
N . �
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5. Particle density operator and monotonicity

In this section, we want to show some additional properties of the particle density operator.
For this it is necessary to restrict some considerations to the real parts of spaces which were
up to now considered as complex ones. We indicate this by an additional subscript R, e.g.,
L∞

R
. The upcoming results are based on the following theorem.

Theorem 5.1. Let H be a self-adjoint operator in the separable Hilbert space H with compact
resolvent, and let U and V be bounded, self-adjoint operators on H. If f : R −→ R is a
Borel measurable function such that f (H + U) and f (H + V ) are trace class operators, then
the formula,

tr([f (H + U) − f (H + V )](U − V )) =
∞∑

k,l=1

(f (λk) − f (µl))(λk − µl)|〈ψk, ξl〉|2 (25)

is valid. Here {λk}k({µl}l) is the sequence of eigenvalues of H + U(H + V ) and {ψk}k({ξl}l)
is an orthornormalized sequence of corresponding eigenvectors.

The proof is given in [17].

Corollary 5.2. If assumptions 3.5 and 3.8 are satisfied, then the mappings L1
R

� V →
Nf (V ) ∈ L∞

R
and W

1,2
0,R � V → −Nf (V ) ∈ W

−1,2
R

are monotone.

Proof. We specify the Hilbert space H to L2 and first consider potentials U,V ∈ L∞
R

,
which are identified with the induced multiplication operators on L2. Replacing U,V in the
preceding theorem by U − µf (U), V − µf (V ) and observing

tr([f (H + U − µf (U)) − f (H + V − µf (V ))](µf (U) − µf (V )))

= tr([f (H + U − µf (U)) − f (H + V − µf (V ))])(µf (U) − µf (V )) = 0,

one obtains∫ 1

0
(Nf (U) − Nf (V ))(U − V ) dx

= 2 tr([f (H + U − µf (U)) − f (H + V − µf (V ))](U − V ))

= 2 tr([f (H + U − µf (U))− f (H + V − µf (V ))](U − µf (U)− V + µf (V ))).

In view of (25) the right-hand side is negative because the distribution function f is
monotonously decreasing.

Let now U,V ∈ L1
R

be arbitrary. If {Un}n, {Vn}n are sequences from L∞
R

which converge to
U,V in L1, respectively, then, on one hand, Nf (Un) �→ Nf (U) andNf (Vn) �→ Nf (V ) in L∞

R
,

due to corollary 4.10. Because one already knows that
∫ 1

0 (Nf (Un)−Nf (Vn))(Un−Vn) dx � 0,

one obtains
∫ 1

0 (Nf (U) − Nf (V ))(U − V ) dx � 0.
The W

1,2
0,R ↔ W

−1,2
R

duality extends the L∞
R

↔ L1
R

duality; thus, the second assertion
follows from the first. �

Theorem 5.3. Let assumptions 3.1, 3.3, 3.5, 3.8 and 3.14 a) be satisfied. If the exchange–
correlation term Vxc is absent, then the Kohn–Sham system has a unique solution {ϕ, u}.
Proof. It is not hard to see that in this case the system can be written as one equation for the
electrostatic potential in the real space W

−1,2
R

, namely

− d

dx
ε

d

dx
φ + qNf (�E − qϕ̃ − qφ) = D, (26)

15
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where ϕ = ϕ̃ + φ. Since the operator − d
dx

ε d
dx

: W
1,2
0,R �→ W

−1,2
R

is strongly monotone, the

operator − d
dx

ε d
dx

+ qNf (�E − qϕ̃ − q·) : W
1,2
0,R �→ W

−1,2
R

is also strongly monotone by the
foregoing corollary. Additionally, this latter operator is continuous, and hence, (26) has a
unique solution by the theory of monotone operators, see [39] ch.26.2. �

Theorem 5.4. Let assumptions 3.1, 3.3, 3.5, 3.8 and 3.14 be satisfied. If {ϕ, u} is a solution
of the Kohn–Sham system, then the electrostatic potential φ = ϕ − ϕ̃ satisfies the following a
priori estimate:

‖φ‖W
1,2
0

� 1

M

(‖D‖W
−1,2
0

+ γL1;W−1,2Nq
)
,

where M is the monotonicity constant for the operator − d
dx

ε d
dx

: W
1,2
0,R �→ W

−1,2
R

and γL1;W−1,2

is the norm of the embedding operator L1 ↪→ W−1,2.

Proof. Clearly, φ satisfies the equation

− d

dx
ε

d

dx
φ + qNf (�E + Vxc(u) − qϕ̃ − qφ) = D,

which can be regarded as an equation in W
−1,2
R

, due to assumption 3.3 and the fact that the
dielectric permittivity matrix ε has real entries, cf assumption 3.1. Considering u as fixed, the
left-hand side is a strongly monotone, continuous operator when acting on φ. We denote it for
brevity by A. Its monotonicity constant is at least M. Using the strong monotonicity, we may
estimate

‖Aφ − A0‖W
−1,2
R

‖φ‖W
1,2
0,R

� |〈Aφ − A0, φ〉| � M‖φ‖2
W

1,2
0,R

,

which leads to

‖φ‖W
1,2
0,R

� 1

M

(‖D‖W
−1,2
R

+ q‖Nf (�E + Vxc(u) − qϕ̃)‖W
−1,2
R

)
� 1

M

(‖D‖W
−1,2
R

+ qγL1;W−1,2
R

‖Nf (�E + Vxc(u) − qϕ̃)‖L1
R

)
.

Obviously, ‖Nf (�E + Vxc(u) − qϕ̃)‖L1
R

equals N, which gives the assertion. �

Remark 5.5. Note that this estimate depends in no way on the distribution function f (within
the class of monotonously decreasing functions, of course).

6. Convergence to zero temperature

In the following, we introduce the function θ by defining

θ(x) =
{

1: x � 1
x: x > 1.

We start with the following technical lemma.

Lemma 6.1. Let assumptions 3.5 and 3.8 be satisfied. Further, let C := {fj }∞j=1 ⊂ D2, cf
theorem 4.9, and f ∈ D such that

lim
j �→∞

sup
x∈[a,∞[

|fj (x) − f (x)|θ(x) = 0 (27)

holds for every a ∈ ]−∞,−1[. If {Vj }∞j=1, Vj ∈ L1 converges to the real potential V ∈ L1 in
L1, then limj→∞ Nfj

(Vj ) = Nf (V ) in L1.
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Proof. One has the estimate∥∥Nfj
(Vj ) − Nf (Vj )

∥∥
L1

= sup
‖W‖L∞=1

∣∣∣∣∫ (
Nfj

(Vj ) − Nf (Vj )
)
W dx

∣∣∣∣
= sup

‖W‖L∞=1

∣∣2 tr
((

fj

(
HVj

− µfj
(Vj )

) − f
(
HVj

− µf (Vj )
))

W
) ∣∣

� 2
∥∥fj

(
HVj

− µfj
(Vj )

) − f
(
HVj

− µf (Vj )
)∥∥

B1

� 2
∥∥(

fj

(
HVj

− µfj
(Vj )

) − f
(
HVj

− µf (Vj )
))(

HVj
− ρ

)∥∥
B

∥∥(
HVj

− ρ
)−1∥∥

B1
,

where ρ < ρC , cf lemma 4.5. This leads to the estimate

‖Nfj
(Vj ) − Nf (Vj )‖L1

� 2
∥∥(

fj

(
HVj

− µfj
(Vj )

) − f
(
HVj

− µf (Vj )
))(

HVj
− ρ

)∥∥
B

∥∥(
HVj

− ρ
)−1/2∥∥2

B2
.

Using (14), one estimates the second factor by∥∥(
HVj

− ρ
)−1/2∥∥

B2

�
∥∥(

HVj
− ρ

)−1/2
(H0 − ρ)1/2

∥∥
B‖(H0 − ρ)−1/2‖B2 �

√
2‖(H0 − ρ)−1/2‖B2 .

To estimate the first one, we write∥∥(
fj

(
HVj

− µfj
(Vj )

) − f
(
HVj

− µf (Vj )
))(

HVj
− ρ

)∥∥
B

� sup
t∈[infj spec(HVj

),∞[

∣∣(fj (t − Efj
(Vj )

) − f (t − Ef (Vj ))
∣∣(t − ρ)

� sup
t∈[infj spec(HVj

),∞[

∣∣(fj (t − µfj
(Vj )

) − f (t − µfj
(Vj ))

∣∣(t − ρ) (28)

+ sup
t∈[infj spec(HVj

),∞[

∣∣(f (t − µfj
(Vj )

) − f (t − µf (Vj ))
∣∣(t − ρ). (29)

The term (28) converges to zero due to (27) and C ⊆ D2.
We consider the term (29). Lemma 4.7 yields that {µfj

(Vj )}∞j=1 and {µf (Vj )}∞j=1 converge
to µf (V ). Thus, the restriction of f (·−µfj

(Vj ))−f (·−µf (Vj )) to finite intervals uniformly
converges to zero by the continuity of f . On the other hand, f decays at ∞ as 1

t2 , thus, for
large arguments t the absolute value of f

(
t − µfj

(Vj )
) − f (t − µf (Vj )) becomes arbitrarily

small uniformly in j . This altogether shows that (29) goes to zero. �

Corollary 6.2. Let assumptions 3.1, 3.3, 3.5, 3.8 and 3.14 be satisfied. Further, let
C := {fj }∞j=1 ⊂ D2, cf theorem 4.9, and f ∈ D such that condition (27) holds for every
a ∈ ]−∞,−1[. If {uj }∞j=1, uj ∈ L1

N converges to the real function u ∈ L1
N in L1, then

limj→∞ �fj
(uj ) = �f (u) in L1.

Proof. By definition (24) we have

�fj
(uj ) := Nfj

(�E + Vxc(uj ) − qϕ(uj )), uj ∈ L1
N, j = 1, 2, . . . .,

where

ϕ(uj ) = ϕ̃ + P−1(D − quj ).
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Since limj→∞ ϕ(uj ) = ϕ(u) = ϕ̃ +P−1(D −qu) in W 1,2 one gets that limj→∞ ϕ(uj ) = ϕ(u)

in L1. Therefore limj→∞ Vj = V in L1, where

Vj := �E + Vxc(uj ) − qϕ(uj ) and V := �E + Vxc(u) − qϕ(u).

Applying lemma 6.1, we complete the proof. �

Theorem 6.3. Let assumptions 3.1, 3.3, 3.5, 3.8 and 3.14 be satisfied. Further, let f ∈ D and
C := {fj }∞j=1 ⊆ D2, cf theorem 4.9 such that C := {fj }∞j=1 obeys (27) for every a ∈ ]−∞,−1[.
If {{ϕj , uj }}∞j=1 are solutions of the Kohn–Sham system with respect to the distribution function
fj , then there is a subsequence {{ϕk, uk}}∞k=1 which converges in L∞ ×L1 to a solution {ϕ, u}
of the Kohn–Sham system with distribution function f .

Proof. By theorem 4.12 {ϕj , uj } ∈ W 1,2 × L1 is a solution of the Kohn–Sham system
with respect to the distribution function fj if and only if uj = �fj

(uj ), j = 1, 2, . . ., and
the corresponding potential is given by ϕj = ϕ(uj ) = ϕ̃ + P−1(D − quj ). According to
theorem 4.9 there are subsequences {uk}∞k=1 and {ϕk}∞k=1 such that the following properties are
satisfied:

• The sequence {uk}∞k is bounded in W 1,2, obeys uk ∈ L1
N and converges in L1 to an

element u ∈ L1
N .

• The sequence of potentials {ϕk}∞k=1 converges in L1 and, additionally, weakly in W 1,2 to
an element ϕ.

By theorem 4.12 the pair {ϕk, uk} is a solution of the Kohn–Sham system with distribution
function fk if and only if uk is a fixed point of the map �k , i.e.

uk = �fk
(uk), k = 1, 2, . . . , .

and the potential ϕk is given by

ϕk = ϕ̃ + P−1(D − quk).

By limk→∞ uk = u in L1 and corollary 6.2 we get u = �f (u) for u ∈ L1. This shows that u is
a fixed point of �f . Moreover, one has ϕ = ϕ̃ + limk→∞ P−1(D − quk) in L∞ which shows
that ϕ ∈ W 1,2. By theorem 4.12, the pair {ϕ, u} is a solution of the Kohn–Sham system with
distribution function f . �

If the Kohn–Sham system with distribution function f has several solutions, then it remains
unclear to which of them a sequence of solutions of Kohn–Sham systems with distributions
functions fj converges. However, if the exchange–correlation term is absent, then the result
can be improved.

Corollary 6.4. Let the assumptions of theorem 6.3 be satisfied. If the exchange–correlation
term Vxc is absent, and if {{ϕj , uj }}∞j=1 are unique solutions of Kohn–Sham systems with
distribution function fj , then {{ϕj , uj }}∞k=1 converges in L∞ ×L1 to the unique solution {ϕ, u}
of the Kohn–Sham system with distribution function f .

Proof. Assume that the sequence {{ϕj , uj }}∞j=1 does not converge to {ϕ, u}. In this case,
there is a subsequence {{ϕk, uk}}∞k=1 converging in L∞ × L1 to an element {ϕ̃, ũ} ∈ L∞ × L1,
which is different from {ϕ, u}. However, by theorem 6.3 the pair {ϕ̃, ũ} is a solution of the
Kohn–Sham system with distribution function f . Since this Kohn–Sham system admits only
one solution the solution {ϕ̃, ũ} coincides with {ϕ, u}, which is a contradiction. �

Now we consider the distribution function fβ which appears in modeling of semiconductor
planar nanostructures, see (7).
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Lemma 6.5. The function fβ(x) = 1
β

ln(1 + e−βx), x ∈ R, strictly decreases in β ∈ ]0,∞[.

Proof. One calculates

∂

∂β
fβ(x) = − 1

β2
ln(1 + e−βx) − x

β

e−βx

1 + e−βx

that immediately shows the assertion for x � 0. Putting −βx =: γ , the assertion for negative
x is equivalent to

γ eγ

1 + eγ
< ln(1 + eγ ), γ > 0,

which follows from γ eγ

1+eγ < γ = ln(eγ ) < ln(1 + eγ ). �

In order to apply this to the Kohn–Sham system at zero temperature, we show in the
following that the corresponding distribution function satisfies the condition (27).

Lemma 6.6. Let {Tj }∞j=1 be any positive sequence converging to zero. We set fj (x) :=
1
βj

ln(1 + e−βj x) where βj = 1
kTj

. Further, we set

f (x) :=
{−x : x � 0

0 : x > 0.

Then condition (27) is satisfied.

Proof. We have

lim
j �→∞

sup
x∈[a,∞[

|fj (x) − f (x)|θ(x)

� lim
j �→∞

sup
a�x�1

|fj (x) − f (x)| + lim
j �→∞

sup
x�1

|fj (x) − f (x)|x (30)

for a � −1. Obviously we have

1

β
ln(1 + e−βx)x � e−βxx

β
, x � 1.

This shows that the second term of (30) tends to zero as j → ∞. Further, it is almost obvious
that fj (x) converges pointwise to the continuous function f for j �→ ∞. Because the family
{fβ}β is monotonously decreasing in β by the preceding lemma, the convergence is uniform
on bounded intervals by Dini’s theorem. This proves that the first term of (30) tends to zero
as j → ∞. �
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[6] Bokanowski O, López J L and Soler J 2003 On an exchange interaction model for quantum transport: the
Schrödinger–Poisson–Slater system Math. Models Methods Appl. Sci. 13 1397–412

[7] Cahay M, McLennan M, Datta S and Lundstrom M S 1987 Importance of space-charge effects in resonant
tunneling devices Appl. Phys. Lett. 50 612–4

[8] Chan G K-L 1999 A fresh look at ensembles: derivative discontinuities in density functional theory J. Chem.
Phys. 110 4710–23

[9] Cohen M H and Wasserman A 2006 On hardeness and electronegativity equalization in chemical reactivity
theory J. Stat. Phys. 125 1121–39

[10] Cohen M H and Wasserman A 2007 On the foundation of chemical reactivity theory J. Phys. Chem.
A 111 2229–42

[11] Cornean H D, Jensen A and Moldoveanu V 2005 A rigorous proof of the Landauer–Büttiker formula J. Math.
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[35] Sánchez Ó and Soler J 2004 Long-time dynamics of the Schrödinger–Poisson–Slater system J. Stat. Phys.
114 179–204

[36] Slater J C 1951 A Simplification of the Hartree–Fock method Phys. Rev. 81 385–90
[37] Su J, Wang Z-Qi and Willem M 2007 Weighted Sobolev embedding with unbounded and decaying radial

potentials J. Differ. Equ 238 201–19
[38] Wang Zh and Zhou H-S 2007 Positive solution for a nonlinear stationary Schrödinger–Poisson system in R3

Discrete Contin. Dyn. Syst. 18 809–16
[39] Zeidler E 1990 Nonlinear Functional Analysis and Its Applications: part II/B. (New York: Springer) (Nonlinear

monotone operators)
[40] Zhang Y and Yang W 2000 Perspective on ‘Density-functional theory for fractional particle number: derivative

of the energy’ Theor. Chem. Acc. 103 346–8
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